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Abstract

In
ation gives rise to a nearly scale-invariant spectrum of tensor pertur-

bations (gravitational waves), their contribution to the Cosmic Background

Radiation (CBR) anisotropy depends upon the present cosmological param-

eters as well as in
ationary parameters. The analysis of a sampling-variance-

limited CBR map o�ers the most promising means of detecting tensor per-

turbations, but will require evaluation of the predicted multipole spectrum

for a very large number of cosmological parameter sets. We present accurate

polynomial formulae for computing the predicted variance of the multipole

moments in terms of the cosmological parameters 
�, 
0h
2, 
Bh

2, N� , and

the power-law index nT which are accurate to about 1% for l � 50 and to

better than 3% for 50 < l � 100 (as compared to the numerical results of a

Boltzmann code).

PACS index numbers: 04.30.+x, 98.80.Cq, 98.80.Es



I. Introduction

In
ation makes three robust predictions: 
at Universe and nearly scale-invariant spectra

of scalar (density) and tensor (gravitational-wave) metric perturbations [1]. The scalar

[2] and tensor [3] perturbations arise from quantum mechanical 
uctuations on very

small scales during in
ation and are stretched to astrophysically interesting scales by the

tremendous growth of the cosmic scale factor during in
ation.

Both the scalar and tensor perturbations give rise to anisotropy in the temperature

of the Cosmic Background Radiation (CBR) seen on the sky today, most conveniently

described by their contribution to the multipole decomposition of the CBR temperature

�T (�; �)=T =
1X
l=2

lX
m=�l

almYlm(�; �): (1.1)

The scalar and tensor contributions to the anisotropy predicted by in
ation are uncor-

related and statistical in character. The individual multipoles that describe our sky are

given by the sum of a scalar plus tensor contribution, with these contributions being

drawn from gaussian distributions with variances hjaSlmj2i and hjaTlmj2i, which are related

to the properties of the in
ationary potential and cosmological parameters. Because the

scalar and tensor contributions are uncorrelated, the variance hjalmj2i = hjaSlmj2i+hjaTlmj2i.
The expected scalar [4] and tensor contributions are shown in Fig. 1 for a nominal set of

cosmological parameters.

CBR anisotropy o�ers a very promising means of testing in
ation as well as deter-

mining the scalar and tensor perturbations. If both can be measured, then information

about the underlying in
ationary potential can be derived (value of the potential and its

�rst few derivatives at a point) [5]. Key to doing this is a high-angular-resolution (better

than 0:5�), sampling-variance-limited map of the CBR sky. (Because there are only 2l+1

multipoles, sampling variance limits the accuracy to which hjalmj2i can be measured { a

relative precision of
q
2=(2l + 1).) Three proposals have been made to NASA (FIRE, PSI,

1



and MAP) for a satellite-borne experiment and another to ESA (COBRAS/SAMBA). A

satellite could be launched as early as 1999.

The separation of the scalar and tensor contributions to CBR anisotropy is likely

to be done by maximum likelihood techniques and will require accurate predictions for

the scalar and tensor contributions (1% or better) to the anisotropy for many sets of

cosmological and in
ationary parameters. At present, achieving such precision requires

numerically integrating Boltzmann equations, which is very time consuming (typically

requiring many hours on a powerful workstation for one set of cosmological parameters)

[6]. The need for a fast and accurate approximation scheme is manifest.

Many analytic approximations to the tensor angular power spectrum have been ex-

plored [7]. The most accurate is as time consuming as numerically integrating the Boltz-

mann equations [8], and even schemes with less accuracy require signi�cant computation

time (tens of minutes). This motivated the present approach { a polynomial �t that can

be evaluated very rapidly (much less than a second for a set of cosmological parameters).

The tensor angular power spectrum, Cl(P ) = hjaTlmj2i, depends upon a set of cosmo-

logical and in
ationary parameters denoted here by P . The set P is: the baryon density,


Bh
2; the matter density, 
0h

2; the level of radiation in the Universe, parameterized by

the equivalent number of massless neutrino species N� ; the present vacuum-energy den-

sity, 
� � 1 � 
0; and the primordial power-law index of the tensor perturbations,

nT (nT = 0 for scale invariant tensor perturbations). We will only be concerned with

the shape of the angular power spectrum; the overall amplitude of the angular power

spectrum, conveniently speci�ed by C2, depends upon the in
ationary parameters (the

value of the in
ationary potential in Planck units) as described elsewhere [9]. In most

approaches, the shape (Cl=C2) and the overall amplitude (C2) are determined indepen-

dently.

The dependence upon the parameters is simple to explain. The shape of the angu-
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lar power spectrum depends on the redshift of last scattering and the evolution of the

gravitational waves after they enter the horizon, which depends upon the evolution of

the cosmic scale factor. The redshift of last scattering (more precisely, the peak of the

visibility function; see Appendix B) depends upon the baryon density, the matter den-

sity, and the level of radiation in the Universe. The evolution of the scale factor of the

Universe around last scattering depends upon the relative levels of matter and radiation

through the value of the scale factor at matter-radiation equality,

REQ = 4:16� 10�5(
0h
2)�1

�
2 + 0:4542N�

3:3626

�
: (1.2)

The recent evolution of the scale factor, which depends upon 
� as well, is also important

for gravitational wave modes which have recently entered the horizon and in
uence the

low l multipoles. Finally, the primordial spectral shape of tensor perturbations (described

by nT ) also a�ects the shape of the angular power spectrum.

We have engineered our �ts based upon the numerical results of the Boltzmann code

written by Dodelson and Knox [10]; they believe that their code is accurate to better than

1%. We expand Cl(P ) around a �ducial set of parameters: for 
� = 0 (
0 = 1), h = 0:5,

N� = 3, 
Bh
2 = 0:0125, and nT = 0; and for 
� 6= 0, 
0h

2 = 0:125, 
Bh
2 = 0:0125,


� = 0:5, N� = 3 and nT = 0. These two cases are treated in the next two Sections. We

end with a brief discussion of the accuracy of our �ts.

II. Zero Cosmological Constant

For 
� = 0, the cosmological parameters are (h;N� ;
Bh
2
; nT ). We de�ne a parameter

vector, P = ([h f(N�)]; N� ; [
Bh
2]�1; nT ), where

f(N�) =

s
3:3626

2 + 0:4542N�

; (2.1)

which is related to REQ of Eq.(1.2).
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We expand the tensor multipole spectrum for P around the tensor multipole spec-

trum for P = Q � (0:5; 3; 80; 0) [which corresponds to h = 0:5; N� = 3;
Bh
2 = 0:0125,

and nT = 0]. We write

Cl(P )

C2(P )
=

Cl(Q)

C2(Q)

 
l

2

!nT

[1 + g(l)nT ]

(
1 +

P3
i=1 fi(Pi �Qi; l)

1 +
P3

i=1 fi(Pi �Qi; 2)

)
: (2.2)

where

f1(P1 �Q1; l) =
4X

j=1

aj(l) (P1 �Q1)
j

f2(P2 �Q2; l) =
3X

j=1

bj(l) (P2 �Q2)
j

f3(P3 �Q3; l) =
3X

j=1

dj(l) (P3 �Q3)
j (2.3)

The coe�cients are found numerically by �tting to the variation due to each parameter

separately. Identifying the relevant vector of parameters minimizes the need for cross

terms.

The P1 coe�cients are

a1(l) = �0:4025
 

l

100

!
� 0:3375

 
l

100

!2

� 2:3441

 
l

100

!3

+ 2:0125

 
l

100

!4

a2(l) = 1:1271

 
l

100

!
� 2:0614

 
l

100

!2

+ 10:9105

 
l

100

!3
� 10:8102

 
l

100

!4

a3(l) = �2:7875
 

l

100

!
+ 10:9417

 
l

100

!2
� 36:4181

 
l

100

!3

+ 41:1617

 
l

100

!4

a4(l) = 3:4719

 
l

100

!
� 16:8888

 
l

100

!2

+ 51:2793

 
l

100

!3

� 61:1775

 
l

100

!4

:

(2.4)

The P2 coe�cients are

b1(l) = 10�3

2
4�0:0361

 
l

100

!
+ 5:3684

 
l

100

!2

+ 3:3680

 
l

100

!3

�2:0872
 

l

100

!4

+ 1:2639

 
l

100

!5
3
5
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b2(l) = 10�3

2
4�0:1105

 
l

100

!
+ 0:1237

 
l

100

!2

� 1:8853

 
l

100

!3

+2:2411

 
l

100

!4

� 1:0243

 
l

100

!5
3
5

b3(l) = 10�4

2
40:1297

 
l

100

!
� 0:5125

 
l

100

!2

+ 2:3069

 
l

100

!3

�2:9658
 

l

100

!4

+ 1:5493

 
l

100

!5
3
5 :

(2.5)

The P3 coe�cients are

d1(l) = 10�4

2
4�0:1972

 
l

100

!
+ 12:3357

 
l

100

!2

� 0:7469

 
l

100

!3

+ 4:0362

 
l

100

!4
3
5

d2(l) = 10�6

2
4�0:0241

 
l

100

!
� 1:7123

 
l

100

!2
� 1:1385

 
l

100

!3

+ 0:6791

 
l

100

!4
3
5

d3(l) = 10�10

2
40:2028

 
l

100

!
+ 12:3878

 
l

100

!2

+ 8:9878

 
l

100

!3
� 6:1211

 
l

100

!4
3
5 :

(2.6)

The coe�cient involving nT is

g(l) = �0:4764
h
1� e

�(l�2)=30
i
+ 1:6734

h
1� e

�2(l�2)=30
i
� 4:0400

h
1� e

�3(l�2)=30
i

+4:6345
h
1� e

�4(l�2)=30
i
� 2:2942

h
1� e

�5(l�2)=30
i
: (2.7)

III. Nonzero Cosmological Constant

For 
� > 0, the cosmological parameters are (
0h
2, 
Bh

2, 
�, N� , nT ). The procedure

of �tting is similar to the 
� = 0 case, but slightly more complicated because one \cross

term" is required to achieve su�cient accuracy.

Here we de�ne the parameter vector, P =
�h
f(N�)

p

0h

2
i
; N� ; [
Bh

2]�1;
�; nT

�
.

Again, we expand the Cl's for P around the Cl's for a standard set of cosmological
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parameters, S. For 
� < 0:36, we take S = (0:5; 3; 80; 0; 0) [which corresponds to

h = 0:5; N� = 3;
Bh
2 = 0:0125;
� = 0, and nT = 0]. For 0:36 � 
� � 0:8, we take

S = (0:3536; 3; 80; 0:5; 0) [which corresponds to h = 0:5; N� = 3;
Bh
2 = 0:0125;
� =

0:5, and nT = 0]. As before, we write

Cl(P )

C2(P )
=

Cl(S)

C2(S)

 
l

2

!nT

[1 + �(l)nT ]

(
1 +

P4
i=1 fi(Pi � Si; l) + �(l)(P1 � S1)(P4 � S4)

1 +
P4

i=1 fi(Pi � Si; 2) + �(2)(P1 � S1)(P4 � S4)

)
;

(3.1)

where

f1(P1 � S1; l) =
4X

j=1

Aj(l) (P1 � S1)
j

f2(P2 � S2; l) =
3X

j=1

Bj(l) (P2 � S2)
j

f3(P3 � S3; l) =
3X

j=1

Dj(l) (P3 � S3)
j

f4(P4 � S4; l) =
4X

j=1

Ej(l) (P4 � S4)
j
; (3.2)

For 
� < 0:36,

Aj(l) = aj(l); Bj(l) = bj(l); Dj(l) = dj(l);

�(l) = g(l); �(l) = 0: (3.3)

The P4 coe�cients are

E1(2) = �6:0163� 10�2; E1(3) = �1:4845� 10�2; E1(4) = �4:3594� 10�3

E2(2) = �3:2853� 10�2; E2(3) = �8:4852� 10�3; E2(4) = �2:5631� 10�3

E3(2) = �1:8426� 10�2; E3(3) = �4:0997� 10�3; E3(4) = �9:4267� 10�4

E4(2) = �2:8162� 10�2; E4(3) = �8:6348� 10�3; E4(4) = �3:1561� 10�3

E1(l > 4) = 0:1

2
40:1483

 
l

100

!
� 2:4098

 
l

100

!2

+ 0:3211

 
l

100

!3

� 0:6630

 
l

100

!4
3
5
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E2(l > 4) = 0:1

2
40:0768

 
l

100

!
� 1:5272

 
l

100

!2

� 0:2895

 
l

100

!3

+ 0:1754

 
l

100

!4
3
5

E3(l > 4) = 0:1

2
40:0580

 
l

100

!
� 1:0585

 
l

100

!2

� 0:1897

 
l

100

!3

+ 0:2662

 
l

100

!4
3
5

E4(l > 4) = 0:1

2
40:0560

 
l

100

!
� 1:6921

 
l

100

!2

� 0:8962

 
l

100

!3

+ 1:0897

 
l

100

!4
3
5 :

(3.4)

All other coe�cients have been given in the previous Section.

For 0:36 � 
� � 0:8, the P1 coe�cients are

A1(l) = �1:0313
 

l

100

!
+ 1:0270

 
l

100

!2
� 7:6262

 
l

100

!3

+6:8176

 
l

100

!4

� 2:9419

 
l

100

!5

A2(l) = 3:5896

 
l

100

!
� 11:9704

 
l

100

!2
+ 37:1339

 
l

100

!3

�35:5609
 

l

100

!4

+ 19:0353

 
l

100

!5

A3(l) = �7:6185
 

l

100

!
+ 34:4566

 
l

100

!2

� 92:1698

 
l

100

!3

+95:4331

 
l

100

!4

� 53:5697

 
l

100

!5

A4(l) = 6:5272

 
l

100

!
� 32:9224

 
l

100

!2
+ 84:7298

 
l

100

!3

�91:4209
 

l

100

!4

+ 51:8163

 
l

100

!5

: (3.5)

The P2 coe�cients are

B1(l) = 10�2

2
4�0:1629

 
l

100

!
+ 1:4392

 
l

100

!2

� 2:2268

 
l

100

!3

+2:8450

 
l

100

!4

� 1:5396

 
l

100

!535

B2(l) = 10�4

2
40:3608

 
l

100

!
� 6:3470

 
l

100

!2
+ 3:4559

 
l

100

!3
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�4:8620
 

l

100

!4

+ 7:0136

 
l

100

!535

B3(l) = 10�4

2
40:1672

 
l

100

!
� 0:8800

 
l

100

!2
+ 2:9272

 
l

100

!3

�3:6758
 

l

100

!4

+ 1:6453

 
l

100

!535 : (3.6)

The P3 coe�cients are

D1(l) = 10�4

2
4�0:1039

 
l

100

!
+ 9:2599

 
l

100

!2

+ 0:1085

 
l

100

!3

+ 2:4910

 
l

100

!4
3
5

D2(l) = 10�7

2
4�0:2716

 
l

100

!
� 16:4608

 
l

100

!2

� 11:4085

 
l

100

!3
+ 8:5966

 
l

100

!4
3
5

D3(l) = 10�9

2
40:0962

 
l

100

!
+ 2:8879

 
l

100

!2

+ 3:0975

 
l

100

!3
� 3:0516

 
l

100

!4
3
5 :
(3.7)

The P4 coe�cients are

E1(2) = �1:3087� 10�1; E1(3) = �3:1368� 10�2; E1(4) = �8:4146� 10�3

E2(2) = �1:1277� 10�1; E2(3) = �2:7633� 10�2; E2(4) = �7:3835� 10�3

E3(2) = �1:3674� 10�1; E3(3) = �3:4105� 10�2; E3(4) = �8:9756� 10�3

E4(2) = �6:8693� 10�1; E4(3) = �1:7588� 10�1; E4(4) = �4:5389� 10�2

E1(l > 4) = 0:1

2
40:5211

 
l

100

!
� 5:7831

 
l

100

!2

+ 1:0999

 
l

100

!3

� 1:2519

 
l

100

!4
3
5

E2(l > 4) = 0:1

2
40:4547

 
l

100

!
� 5:2202

 
l

100

!2

� 0:1399

 
l

100

!3

� 0:3364

 
l

100

!4
3
5

E3(l > 4) = 0:1

2
40:5924

 
l

100

!
� 7:3578

 
l

100

!2

� 1:5359

 
l

100

!3

+ 1:3647

 
l

100

!4
3
5

E4(l > 4) = 0:5016

 
l

100

!
� 7:0197

 
l

100

!2

� 0:2120

 
l

100

!3

+ 2:9141

 
l

100

!4
:

(3.8)
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The coe�cient involving nT is

�(l) = �0:4670
h
1� e

�(l�2)=30
i
+ 1:7234

h
1� e

�2(l�2)=30
i
� 4:2724

h
1� e

�3(l�2)=30
i

+4:9757
h
1� e

�4(l�2)=30
i
� 2:4571

h
1� e

�5(l�2)=30
i
: (3.9)

Note that �(l) ' g(l).

The cross-term coe�cient is

�(l) = �3:7201
 

l

100

!
+ 29:9770

 
l

100

!2
� 117:6372

 
l

100

!3

+ 236:1950

 
l

100

!4

�257:9630
 

l

100

!5

+ 147:3101

 
l

100

!6

� 34:5437

 
l

100

!7

: (3.10)

IV. Discussion

By identifying the relevant cosmological parameters we have developed a fast (� 1 sec)

and accurate (few percent or better) algorithm for computing the shape (Cl=C2) of the

tensor angular power spectrum for a primordial tensor power spectrum of the form

PT (k) / (k�0)
nT k

�3
; (4.1)

where �0 is the conformal time today. Our algorithm employs a polynomial in the pa-

rameters 
�, 
0h
2, 
Bh

2, nT , and N� .

To assess the accuracy of our algorithm we sampled the following parameter intervals

uniformly and at random: 0:35 � h � 0:8, 2 � N� � 12, 0:005 � 
Bh
2 � 0:03,

�0:3 � nT � 0, and 0 � 
� � 0:8. In Figs. 2 and 3 we show the histograms of

the maximum error in Cl=C2 for 
� = 0 and 
� 6= 0 respectively. For 
� = 0 the

maximum error (relative to the Boltzmann code of Ref. [10]) is less than about 0.5% for

l � 50 and less than about 2% for l � 100. For 
� 6= 0, the accuracy is slightly worse,

better than about 1% for l � 50 and better than about 3% for l � 100. In the case of


� 6= 0 the largest errors occur for 
0h
2
< 0:05 (large 
� and small h).
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The tensor contribution to the quadrupole plays a special role. It provides a con-

venient overall normalization for the angular power spectrum and can be related to the

value of the in
ationary potential when the comoving scale k� = H0 crossed outside the

horizon during in
ation [9]:

V�=m
4
Pl = 0:66

h
1:� (f

(1)
T + 0:1)nT

i
C2=f

(0)
T ; (4.2)

where the functions f
(0;1)
T (
�) are given by

f
(0)
T (
�) = 1:� 0:03
�� 0:1
2

�

f
(1)
T (
�) = 0:58� 0:50
�+ 0:31
2

�� 0:88
3
�: (4.3)

The dependence of this relationship on cosmological parameters other than 
� is much

less signi�cant [9].

There is even more motivation for developing a fast and accurate algorithm for the

scalar angular power spectrum. However, this task is more challenging: the power spec-

trum has more structure (cf., Fig. 1) and that structure extends to higher multipoles.

We are currently working on an algorithm for the scalar angular power spectrum.
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Appendix A: Table of standard Cl's

l
l(l+1)Cl(
�=0)
6C2(
�=0)

l(l+1)Cl(
�=0:5)
6C2(
�=0:5)

2 1.000000000 1.000000000

3 7.85882861E-01 8.12787313E-01

4 7.43475686E-01 7.75447410E-01

5 7.35658928E-01 7.69590303E-01

6 7.38104089E-01 7.73328636E-01

7 7.43851511E-01 7.80190352E-01

8 7.50438650E-01 7.87827791E-01

9 7.56898572E-01 7.95302374E-01

10 7.62844076E-01 8.02234328E-01

11 7.68121692E-01 8.08471560E-01

12 7.72700749E-01 8.13985567E-01

13 7.76567875E-01 8.18762161E-01

14 7.79782672E-01 8.22865837E-01

15 7.82327767E-01 8.26275290E-01

16 7.84314505E-01 8.29111207E-01

17 7.85671940E-01 8.31292902E-01

18 7.86573958E-01 8.33010933E-01

19 7.86864814E-01 8.34090814E-01

20 7.86805032E-01 8.34819817E-01

21 7.86129624E-01 8.34902088E-01

22 7.85208901E-01 8.34747737E-01

23 7.83648115E-01 8.33916120E-01

24 7.81949251E-01 8.32965076E-01

25 7.79570004E-01 8.31288581E-01

26 7.77161094E-01 8.29611689E-01

27 7.74020055E-01 8.27148151E-01

28 7.70959238E-01 8.24805533E-01

29 7.67105366E-01 8.21604444E-01

30 7.63442668E-01 8.18647318E-01

31 7.58920711E-01 8.14753604E-01

32 7.54699914E-01 8.11226404E-01

33 7.49551094E-01 8.06680893E-01

34 7.44812364E-01 8.02623603E-01

35 7.39076276E-01 7.97464933E-01

36 7.33855970E-01 7.92913085E-01

37 7.27571031E-01 7.87178514E-01

38 7.21903458E-01 7.82165288E-01

39 7.15107322E-01 7.75891111E-01

40 7.09025177E-01 7.70447667E-01
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l
l(l+1)Cl(
�=0)
6C2(
�=0)

l(l+1)Cl(
�=0:5)
6C2(
�=0:5)

41 7.01754819E-01 7.63669098E-01

42 6.95290317E-01 7.57825769E-01

43 6.87581696E-01 7.50576759E-01

44 6.80766517E-01 7.44363318E-01

45 6.72655788E-01 7.36677916E-01

46 6.65520307E-01 7.30122320E-01

47 6.57043916E-01 7.22034754E-01

48 6.49618128E-01 7.15164612E-01

49 6.40812380E-01 7.06709069E-01

50 6.33125395E-01 6.99550707E-01

51 6.24026867E-01 6.90761689E-01

52 6.16107568E-01 6.83341454E-01

53 6.06751841E-01 6.74252272E-01

54 5.98629552E-01 6.66596862E-01

55 5.89051404E-01 6.57240302E-01

56 5.80754839E-01 6.49375955E-01

57 5.70988919E-01 6.39784406E-01

58 5.62546297E-01 6.31736935E-01

59 5.52626894E-01 6.21943006E-01

60 5.44065284E-01 6.13736759E-01

61 5.34026679E-01 6.03773187E-01

62 5.25372061E-01 5.95432062E-01

63 5.15247817E-01 5.85331082E-01

64 5.06526007E-01 5.76878240E-01

65 4.96347985E-01 5.66670612E-01

66 4.87585435E-01 5.58131161E-01

67 4.77383343E-01 5.47844948E-01

68 4.68606069E-01 5.39242990E-01

69 4.58408817E-01 5.28906521E-01

70 4.49640932E-01 5.20265325E-01

71 4.39477440E-01 5.09906642E-01

72 4.30741650E-01 5.01246850E-01

73 4.20639523E-01 4.90893728E-01

74 4.11958163E-01 4.82237697E-01

75 4.01942685E-01 4.71915135E-01

76 3.93337874E-01 4.63283465E-01

77 3.83432932E-01 4.53015076E-01

78 3.74925150E-01 4.44428914E-01

79 3.65153926E-01 4.34239289E-01

80 3.56761877E-01 4.25716630E-01
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l
l(l+1)Cl(
�=0)
6C2(
�=0)

l(l+1)Cl(
�=0:5)
6C2(
�=0:5)

81 3.47146488E-01 4.15627684E-01

82 3.38887429E-01 4.07185415E-01

83 3.29449095E-01 3.97220535E-01

84 3.21338323E-01 3.88874768E-01

85 3.12097094E-01 3.79055720E-01

86 3.04149866E-01 3.70821411E-01

87 2.95121515E-01 3.61164479E-01

88 2.87354633E-01 3.53060287E-01

89 2.78552720E-01 3.43581079E-01

90 2.70980245E-01 3.35623379E-01

91 2.62418690E-01 3.26338036E-01

92 2.55052066E-01 3.18539155E-01

93 2.46743720E-01 3.09462129E-01

94 2.39593392E-01 3.01833443E-01

95 2.31549532E-01 2.92978236E-01

96 2.24624559E-01 2.85530583E-01

97 2.16855038E-01 2.76910111E-01

98 2.10163325E-01 2.69653750E-01

99 2.02676236E-01 2.61279304E-01

100 1.96225065E-01 2.54224121E-01

Appendix B: Last Scattering

In the early Universe, matter and radiation were in good thermal contact, because of the

rapid interactions between the photons and electrons. As the temperature dropped below

0.3eV, electrons combined with protons to form neutral hydrogen (\recombination") at

a redshift of around 1300. With the disappearance of free electrons, the photon mean

free path became very large (> H
�1) and matter and radiation decoupled at a redshift

of around 1100. Last scattering is crucial in calculating the CBR anisotropy. [11]

The redshift of last scattering, zLSS, is given by the peak of the visibility function

g(z) � e
��d�=dz; g(z)dz measures the probability that a given photon su�ered its last

scattering in the redshift interval (z, z+dz). The optical depth (measured from the
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present back to redshift z) is given by

�(z) = c

Z z

0
dz

dt

dz
ne(z)�T ; (6.1)

where dt is the proper time interval, ne(z) is the electron number density, and �T =

6:65� 10�25 cm2 is the Thomson scattering cross-section. The electron number density

depends on 
Bh
2 and H(t), the Hubble parameter at time t. At the relevant times

(around recombination and last scattering), H(t) only depends on 
0h
2 and N� . Hence,

zLSS only depends on 
Bh
2, 
0h

2, and N� . Numerically, we �nd

zLSS = 1104:37+�z(
Bh
2
;
0h

2) + �z(
0h
2) + �z(N� ;
Bh

2
;
0h

2); (6.2)

where

�z(
Bh
2
;
0h

2) = 0:5285
h
(
Bh

2)�1 � 0:0125�1
i  
0h

2

0:25

!0:31

�7:022� 10�4
h
(
Bh

2)�1 � 0:0125�1
i2 
0h

2

0:25

!0:55

�z(
0h
2) = 73:21

�q

0h

2 � 0:5

�
� 12:06

�q

0h

2 � 0:5

�2

�z(N� ;
Bh
2
;
0h

2) = 0:3823(N� � 3)

 

Bh

2

0:0125

!
�0:756 


0h
2

0:25

!
�0:46

: (6.3)

Our �tting formula is accurate to �z = �1 for the parameter ranges of 0:1 � 
0h
2 � 0:64,

0:005 � 
Bh
2 � 0:03, and 2 � N� � 12.
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Figure Captions

Fig.1 The predicted scalar and tensor contributions. The set of cosmological param-

eters is: h = 0:5, 
B = 0:05, N� = 3, 
� = 0, nT = 0.

Fig.2 Histograms of maximum error for l � 50 and l � 100 (
� = 0).

Fig.3 Histograms of maximum error for l � 50 and l � 100 (
� > 0).
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Figure 1: The predicted scalar and tensor contributions. The set of cosmological param-

eters is: h = 0:5, 
B = 0:05, N� = 3, 
� = 0, nT = 0.
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Figure 2: Histograms of maximum error for l � 50 and l � 100 (
� = 0).
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Figure 3: Histograms of maximum error for l � 50 and l � 100 (
� > 0).
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